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THE EFFECT: IW MODEL MIS:WU:MC/OWN MID SMILE Sla.

ON LISREL MAXlhgitl LIKELIHOOD ESTIMATES

Statmment of the ?roblem

Covariance structure modeling using the LISREL program requires the

researcher to make certain fundamental
assumptions about the nature of

the available data, the representativeness of the sample, and the

plausibility of the theoretical model being tested. The statistical

processes of specification, estimation, and testing of hypothetical

models presuppose important statistical and theoretical conditions, and

violations of these assumptions may seriously jeopardize the consistency

of results. Such consistency, as it relates to the reliability of

parameter estimates and test statistics, may also be termed robustness.

The robustness of LISREL to violatoons of assumptions should be

known so that applied researchers
can make more appropriate ule of this

sophisticated data analysis tool. The appropriateness of the LISREL

model and the accuracy of results when Known violations occur are

subject to question. Most problems regarding robustness have largely

been ignored by applied researchers, though not by choice. Because

LISREL is a relatively new statistical technique, statistical

researchers have not yet been able to answer most questions regarding

the robustness of LISREL. Some recent Monte Carlo studies have examined

the effects of using discrete variables or variables with skewed

distributions; others have attempted to systematically review the

effects of sample size and model misspecification. However, much work

remains before statisticians or applied resarcners can feel reasonably

sure that LIM results are robust to assumption violations or that

violations will consistently distort results in known and predictable
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ways.

Me purpose ):.! :Air study is to examine the robustness of LISREL

MAXIMUM likelihood estimates under specific conditions of model

misspecification and sample size. The conditions of model

misspecification include errors of omission of structural paths, errors

of inclusion of structural paths, and simultaneous errors of omission

and inclusion of structural paths. All misspecifications are examined

under sample sues of 100 and 200. By examining the values of parameter

estimates and comparing them to the population values, we have more

specific information about how such factors affect parameter estimates

in applied research situations.
Behavorial scientists need this

information in order to make more informed decisions about model

specification and its relation to substantive theory.

Research Questions

The results of previous simulation studies and the substantive

Knowledge available on the nature of model specification lead to several

questions:

Are certain types of specification error more serious in

terms of parameter bias and/or model fit? This question has

never been addressed adequately,
although Gatlin! (19631

presented some preliminary
observations and conciusauns in

the study of common specification
errors in path analysis.

(2) Are compound specification
errors more likely to lead to

parameter bias than are single errors of omission or

inclusion? MacCallum (1986) has attempted to gauge the

effects of compound errors. This question, however, needs to

be answered more systematically by developing a typology of

4



possible errors and testing the effects of such eirurs on the

same structural model.

(3) Are sample sizes of 100 more likely to lead to

parameter bias than are samples of 200? Boommma (1903)

considered the effects of sample size. Much of this work,

however, dealt with the robustness of factor loadings. The

same question in regard to the robustness of structural

parameter estimates needs to be answered.

(4) Are sample sizes of 100 more likely to lead to

problems with Heywood cases or nonconvergence of solutions

than are samples of 200? This issue was also examined in the

Boommma (1903) study. The present study examines this

problem more thoroughly for structural equation models.

(5) when the measurement model is not miSspecified, will

factor loadings be consistent from model to model? This

question has not been specifically addressed in any previous

study.

The Concept of the True Model

This study attemptea to answer two questions: (1) how does sample

size affect the maximum likelihood parameter estimates produced by a

LISREL-type model; and (2) how do specific instances of structural model

misspecification affect the parameter estimates. Robustness studies of

this type are commonly made using Monte Carlo method. The main

advantage of this empirical method is that the true distribution is

known, not assumed, as in most analytical methods of study (Hatch &

Posten, 1966). The researcher Knows the true probability distribution a

priori because the researcher is free to specify the distribution and
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take samples from it (Acito & Anderson, 19841 Thus Monte Carlo methods

involve the generation and analysis of artificial data.

The probability distribution from wnicn to take samples is

determined by the problem at hand. In thiS case, LISREL structural

equation modelinX :Iquires a multivariate normal distribution. As it

was not the aim of this study to examine the effects of non-normality or

the effects of using categorical data, the indicator variaoles were

assumed to follow a murivariate normal distribution.

Under typical applications of the LISRfL model, a raw data matrix of

size H X k would be obtained and a sample covariance or correlation

matrix would be derived and used as Input to the LISR1L program. In the

Monte Carlo study, the generation of raw data is unnecessary. Once the

true model has been specified, true parameter values are determined.

These parameter values are supplied to a computer program, and the

population covariance matrix E is generated.

If we regard the finite population matrix E as a sample

covariance matrix and analyze it using maximum likelihood estimation,

the estimated parameter valves would be exactly equal to the true

parameter values. In fact, regardless of the estimation procedure used,

the obtained solution would be identical to the true solution, and all

solutions would have a perfect fit to the data with a chi-square of zero

(Joreskog & Sorbom, 1984).

Sampling theory tells us that a sample +.;,en from a population

(known or unknown) can yield an estimate that is either close to the

population value or widely discrepant from it due 1.o sampling

variability. In Monte Carlo studies, the population values are known,

and subsequent sampling produces estimates within the wide range implied

by the population. Thus a specific sample may yield covariances that
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are close to or widely deviant from population covariwices, but on the

average over numerous samples, the average sample values should

approximate true population values (Hammerley & Handscomb, 1964).

The notion of sampling brings up two other questions: (1) what is

the optimal sample size it and (2) how maw, samples or number of

replications NR should be generated. Sample size affects the generation

of sample estimates as it is known from sampling theory that larger

samples have a higher probability of yielding sample values which are

close to the population values. Also the number of replications nAS an

effect on this probability. Any one replication regardless of sample

size may have sample specific characteristics. Thus multiple

replications are necessary in Monte Carlo research.

The optimal sample size question is answered by consideration of

past research. The LISREL likelihood ratio test assumes a large sample

size and yet a definition of 'large" was not examined until tne work of

Boomsma (1982a, 1982b, 1983). Boomsma initially experimented with models

using sample sizes of 25, 50, 100, 200, 400, and 800. Analysis of his

first model revealed that serious convergence problems often resulted

from using sample sizes smaller than 100. For samples of size H: 100,

convergence problems and improper solutions were fewer, but the

distributions of sample parameter estimates were not normal. In

subsequent analyses, the samples using N:800 were also dropped as

estimates and chi- square statistics were not Unproved by the use of this

sample size. The sample size H: 200 is a reference point established by

Boomsma and considered In most Monte Carlo studies thereafter

(Ethington, 1985; Gallini & Mandeville, 1983; Gerbing & Anderson, 15085:

MacCal RA 1985).

The number of replications Is also a primary Issue that vls first

P*1



;mined by Soomsw? (1983). The nummer of replications is a determining

ialtcr in yatadlishlng the accuracy of szmple parameters, standard

errers. and chi-square statistics. As Yith sample size, more usually

means better In terms of estimating population values. Monte Carlo

studies however are often limited by the realities of using extensive

commAer time, the cost of such time, and the sheer difficulties of

nand!.ng the massive arlunts of numbers produced by a Monte Carlo study.

For instance, Boomsma (1983, p. 46) states that use of a 99x confidence

level would require 6643 replications. If a mode: were estimated that

contained 20 parameters, producing the estimates, the standard errors,

the t-values, the modification indices, the variances of the estimates,

and the chi-square statistics would require handling 101 pieces of

information for each replication or &70,943 numbers for all 6643

replications of one model. The amount of information is even more

s.aggering when one considers that most studies involve comparisons of

many mode's.

Boomaxa first used 100 replications for his initial worK. After

studying the results, the number of replications was Increased to 300.

The demands of computer time, storage of information, and amount of

information were heavy but not unreasonable. The results were greatly

Improved by using 300 replications instead of 100 as the standard errors

were reduced by half. Therefore for this study 300 replications were

used for each model tested.

Model oescription

The population model used for this study was designed so as to

represent a number of structural specifications commonly found in

applications. Such specifications could then be manipulated in the
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models to be tested, and the effects on the models examined. The true

model is presented in Figure i, and the population parameters are given

in Table 1.

The population model contains one exogenous variable, three

endogenous variables, and eight indicator variables, two for each latent

variable. Although the use of three indicator variables per latent

variable would reduce the parameter bias that sometimes occurs when two

or fewer indicator variables are used, it IS useful to study the

behavior of parameter estimates under the worst possible conditions.

Also, the use of two indicator variables per latent variable is not

uncommon in applied research (Gerbing A Anderson, 1985; Boomsma, 1986).

For the present study, all model misspecification occurs in tne

structural model; the measurement model remains constant and consists of

indicators generated from a multivariate normal distribution.

The following nine possible types of structural model

misspecification were studied:

I. Errors of omission

A. Omitted path from an exogenous variable to an

endogenous variable (which now becomes an

exogenous variable),

B. Omitted recursive path from an endogenous

variable to an endogenous variable, and

C. Omitted non-recursive path between endogenous

variables.

2. Errors of inclusion

A. included path from an exogenous variable to an

endogenous variable,

B. Included recursive path from an endogenous
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variable to an endogenous variable, and

c. Included non-recursive path between endogenous

variables.

3. Simultaneous errors of omission and inclusion

a. Omitted path from an exogenous variable to an

endogenous variable (which now becomes an

exogenous variable) and included path from an

exogenous variable to another endogenous

variable,

a. :witted recursive path from an endogenous

variable to an endogenous variable and included

recursive path from an endogenous variable to

another endogenous variaale, and

c. Omitted non-recursive path between endogenous

variables and included a different non-recursive

path between endogenous variables.

Generation of Sample Covariance Matrices

and Estimation of the Misspecified Models

Using the assigned true parameter values, the model was specified

and the population covariance matrix generated using a SAS PROC MATRIX

program. The population covariance matrix E is used to generate 300

sample covariance matrices S for each model to be tested. The sample

covariance matrices were produced by using a FORTRAN Wishart variate

generator program (Smith & Hocking, 1972). This FORTRAN routine

generates a sample covariance matrix from a multivariate normal

population with mean vector 0 and the specified sample size.

LISREL programs were written for each of the nine models to be
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tested. In addition, each model was tested under two sample sizes, 11:

100 and t1:200. Thus 16 combinations of model misspe,7ification and

sample size were tested for a minimum total of 5400 replications over

the entire study. The LISREL program zomputes starting values using an

instrumental variables method (non-recursive models) or a least squares

method (recursive models). Use of these starting values effectively

cuts down on the computer time required for estimation and aids in

reacning a convergent solution within the 250 iteration limit imposed by

the LISREL program.

The relevant output from the program runs consisted of the maximum

likelihood parameter estimates, the standard errors of the estimates,

Modification ladice5 !or all parameters that were not being estimated,

and 'he chi-square goodness-of-fit value with the associated deUrees of

freedom. Means and average standard errors of parameter estimates were

computed across replications for each combination of model and sample

size H.

Assessment of the results was based on the following criteria:

(1) Average parameter estimates for each model and sample

size combination across replications

A. Bias of sample estimates: Is the average sample

parameter estimate different from the actual

parameter value? This relative difference was

judged ny computing a difference statistic

ud which is [(w - (70/ w] X 100.

B. Standard errors of sample estimates: Is the

root mean square error (RMSE) of a parameter

estimate different from the expected standard

error? The RMSE is an unbiased estimate of the
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average standard error for a restricted sample

,Ile. Th13 statistic Is the square root of the

cncorrected stm of squares for a

;?-neter estimate. The actua: standard errors

,ould provide a bizsed estimate if averaged.

2:le expected standard error is the standard

.-r,3r when E is used fo:, a specified sample

This relative difference was judged by

computing a difference statistic sed which is

se)/ se) X 100.

(2) Average chi-squne across replications: Would a

misspecilled model still be considered a good fit? What

is the rate of rejection for miSspecified models?

(3) Modification indices for errors of omiss,on

A. Average modification index for a particular

error.

B. Percentage of cases in which the index is

highest for the misspecification made: Does the

modification index correctly indicate the model

adjustment to be made?

(4) T- va'ues for errors of inclusion

A. Average t-value for error: Is the t-value

significant?

B. Percentage of cases in which the t-value is

Insignificant: Does the t-value correctly

indicate that the parameter should be set

equal to zero?

1 "
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Improper Solutions and Nonconvergence

In addition to analyzing information about model misspecification,

parameter bias, and resultant goodness-of-fit, it is also of interest to

consider the occurrences of improper solutions and nonconvergence in a

Monte Carlo study. Improper solutions result when maximum

estimates of variances are nega These negative variances indicate

that the solution is unstable. Nonconvergence was defined as the

inability of the program to find a unique solution which meets the

convergence criteria within 250 iterations. Often it is uncertain

whether raising the maximum number of iterAons will lead to a final

solution. In cases of Monte Carlo study, it is often more efficient to

simply terminate the program after 250 iterations (Boomsma, 1982a,

1985). Such was the case in the present study.

Negative estimates of variances or Heywood cases are problematic in

that the solution is sospect. In Monte Carlo research however, the

solutions are often regarded as plausible and the parameter estimates,

standard errors, and chi-square statistics are analyzed as for

admissible solutions (Bnomsma, 1942, 1985; Rindslcopf, 1984). Gerbing &

Anderson (1985) disagree, and have emphasised tnat inclusion of improper

solutions may lead to problems or interpretation and additi9nai bias.

For this study, improper solutions were included in the analysis

unless the improper solutions represented a sizeable percentage (over

10"., of the replications for any one model. It was planned that If some

particular models had overly numerous improper solutions, the bias of

parameter estimates would be calculated twice-- once with the improper

solutions included and once with the Improper solutions excladed. In

this way, the influence of improper solutions on Monte Carlo results

could be examined more thoroughly. These measures were not needed,

13
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however, as nom of the misspecified models produced more than 10z of

Laproper soluLlons.

Amore ::ericLs problem in iionte Carlo research is that of

nonconvergence. In general, nonconvergence problems are most often

a.s:acirted 'rah small sample sizes. Because this study involved sample

sizes of IOU and 200. it was expect d that nonconvergence problems would

be infrequent. Since the solution in a nonconvergent LISREL analysis

may deviate widely from true solution, nonconvergent solutions were

not included in the analysis. Any solutions that were nonconvergent

were discarded and another computer analysis with a new ransom sample

was used to take its place. In other words, there were at least 300

converged replications for each model tested.

Analysis

Each case of model misspecification was studied for each of two

sample sizes, H:100 and NI:200. Thus 18 cc ibinations of model

misspecification and sample size were tested with at least 300

replications per combination. The program output was compiled and the

PROC UNIVARIATE proceaure of SAS was used to tabulate average parameter

estimates, root mean square errors, average modification indices, and

the frequencies of estimates across replications and within each

combination. T-values were determined, and the relative difference

statistics wd and sed were calculated. These data provide

information about the effects of model misspecification, parameter

estimate Dias, and the resultant goodness-of-fit of the moeel. In

addition, the frequency of improper solutions and nonconvergence were

examined.

14
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Sunnary of the Results

In °Mk. to compare the rates of nonconvergence and improper

solutions across models and sample sizes, Table 2 presents an overview

of these results. In general, the incidence of nonconvergence and

Heywood cases was the same for both sample sizes. However, for Models

1,44 2B, and 3B the difference in the rates of nonconvergence was

larger. For Model 1A, a sample size of 200 produced 7% nonconvergent

solutions as opposed to 137. for N:100. For Models 2B and 3B, the rates

were 4% for 14:200 and 137. for N:100. Models 1B, 2C, and 3A had the

highest rates of nonconvergence- 49%, 37%, and about 507. respectively.

There were no models in which the rates for improper solutions was

higher than 10%.

Tables 3, 4, and 5 present summaries of the results for Models 1, 2,

and 3. These tables give qualitative information on the relative

performance of the models for each of the sample sizes considered.

These tables are based on similar tables found in Boomsma (1983). Part

I of each table indicates the degree of bias for the parameter estimates

and standard errors. Part II indicates the aegree of departure from

optimal performance. For example, if a misspec:fied model had a high

rate of acceptance and an average x2 value less than the critical

value, such performance could not be considered optimal as the

guodness-of-fit is misleading.

Discussion of the Results

The purpose of this study was to examine the robustness of LISREL

maximum likelihood parameter estimates under specific conditions of

model misspecification and sample s(ze. These conditions of model

misspecification are errors of omission of structural paths, errors of
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inclusion of structural paths, and simultaneous errors of omission and

inc.usion of structural paths. By examining the values of the parameter

estimates and comparing them to the population values, we have some

specific information about how such factors may affect parameter

estilates in applieJ research situations. In addition, this study has

invest.gated th ^4fects of model misSoecificati: anJ sample size on

the estimates of standard errors, the .-values, the modification

indices, tne zoodness-of-fit of the model, and the frequency of

nonconvergent and improper solutions. These results will similarly

provide us with information that may aid researchers in making informed

decisions with regard to the theoretical specification of LISREL models.

Certain types of specification errors seem to be more serious in

terms of parameter bias and/or model fit In general, the effects of

omitting a path from an exogenous variable to an endogenous variable

seem to be less serious than the effects of omitting a path from an

endogenous variable to another endogenous variable. The estimation of

parameters and standard errors was affected much less Dy the former

error than by the latter. The marked bias of the structural parameter

estimates when a path from one endogenous variable to another endogenous

variable is omitted should be noted. Nonconvrgence problems were also

more frequent when such a path was omitted. The )(Z measures for

goodness-of-fit appropriately indicated a lack of congruence between the

data and the theoretical model except In the case of Model 1B with

E=100

Adding a path from one endogenous varianie to another endogenous

variable affects the estimation of parameters and standard errors less

than for any other m.sspecif.,:ation, regardless of sample size.

However, the misspecified model would be accepted as a good fit with a

1 6
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very high probability. The addition of a path from an exogenous

variable to an endogenous variable presented problems only for the

smaller sample size.

Omitting a single reciprocal path is also not serious. However,

adding a reciprocal path wnen another reciprocal path already exists in

the model seems to present severe estimation problems for the standard

errors. This is probably due to the incorrect partioning of direct and

indirect effects. Adding a reciprocal path to a model that has no other

non-recursive path may, not have the same effects as were noted in this

study.

Simultaneous errors from an exogenous variable to an erdogenous

variable seem to be more problematic than single errors of omission or

inclusion. The structural parameter estimates and the standard errors

are more likely to be quite different from the population values. The

problems of -ionr- vergence were also much more severe for the model with

simultaneous errors.

Model goodness-of-fit was markedly affected for Models 3B and 3C in

that these models fail to yield accurate results concerning

goodness-of -fit, and the correct respecilications cannot be discerned

from the modification indices and t-values. Moderate bias was noted for

the parameter estimates.

AS was expected, the factor loadings remained consistent from model

to model with little or no bias detected. This finding confirms the fact

that changes in the structural model have few effects on the measurement

model.

Nonconvergencc problems seem to be related to the type of error made

in relation to the overall pattern of the true model. For example, the

addition of a structural path from an endogenous variable to another

17
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enCogenous variable presented numerous nonconvergence problems, One

Auld expect that the model containing simultaneous errors might

IL- :se be affected, but this was not the case. The particular

iroblems for this misspecification may be model-specific, that is, due

to the repartitioning of direct and indirect effects in contrast to such

effects in the true model. Of the four latent variables in the model,

three are endogenous. There is a certain dynamic to the flow of direct

and indirect effects in this model. For the case in which reciprocal

paths are present, an almost circular flow of effects could be assumed.

Omitting a "major" path in the model may restrict this dynamic flow.

Thus the nonconvergence problems may be more Indicative of

model-specific tendencies than due to the deletion of a particular type

cf path.

Sample size seemed to be a minor issue in many of the models studied

If the models are examined on a case-by-case basis. There seems to be a

general "rule of thumb" in that those models which fit well and are

relatively "easy" to estimate can be estimated well whether the sample

size is 100 or 200. On the other hand, models which have convergence

problems or which do not fit well will usually have similar results for

the di2ferent sample sizes as well. This does not mean, however, that a

sample size of 100 necessarily gives the same results as a sample size

of 200. In particular, the standard errors seem to be greatly affected

by sample size. This was particularly true for Models IA and IC. Sample

estimates of standard errors were much closer to population values when

N.:200. Even when tne parameter estimates themselves were relatively

unbiased for M:100, comparisons to the results of W200 snow that these

estimates are even more accurate for the larger sample size. The

incidence of rejecting a misspecified model also seems tv improve when

18
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the sample size is increased. T-values more adequately reflect the

inclusion of extraneous paths, and the modification indices more

accurately flag those paths which should be included in the model.

Overall, few blan1et recommendations as to the classes of

specification errors whICh most seriously affect the robustness of

parameter estimates can be made. From a theoretical point of view, it

might seem that adding a path to an otherwise correctly specified model

would be the least innocuous of all errors. Inspection of the parameter

estimates for the models tested would seem to support this notion.

However, it must be pointed out that the goodness-of-fit for all errors

of inclusion was very good, a bit of information that is quite

misleading. In addition the standard errors for all of these models

were moderately to strongly biased. Such bias can also affect

conclusions as to the ii4nificance or non-significance of Individual

parameters.

Which errors are of the most consequence from an applied standpoint?

Exclusion of 0 paths, Inclusion of reciprocal paths in models that

already contain a reciprocal path, an multiple errors of any sort seem

to have the most serious consequences for causal modeling. Such errors

bias structural parameter estimates and severely distort standard

errors. Recovery from such misspecifications is doubtful. T-values will

not be reliable, modification indices cannot be guaranteed, and model

goodness-of -fit is also affected.

The results of this study support some conclusions from past

research. The recommendation by Boomsma 11983) to use sample sizes

larger than 100 is supported. Although the average xa statistics

did not indicate any overall improvement from 11:100 to H=200, the range

of xa values Is much smaller for H:200; thus, the probability of

19



18

pb,;:ining a reliaole test statistic is much imprcved for the larger

".ample size. ,;s V3cU3SeC previously, sample size has a definite effect

on the estimaticr of parameters, standad errors, and modification

indices.

MacCallum5 (.;85) research shce.ec that models with one

Mizspecificirtion error often were not rejected. This research

demumtrates that models containing errors of Inclusion are particularly

at high risk of being erroneously accepted as plausible. On the other

hand, models containing errors of omission may be rejected or may fail

to be rejected depending upon the type of path omitted. Contrary to

McCallum's study, two misspecification errors do not necessarily

increase the chances of rejecting a model. The types Of errors made

seem to be more important than the number ot errors. for Instance, for

Model 3C which omitted and included reciprocal paths, the model was

accepted as plausible in most replications. This was true despite the

fact that structural parameters were biased.

Gerbing & Anderson's (1985) Monte Carlo study demonstrated that the

variability of parameter estimates decreases as sample size increases.

This finding was likewise supported in this study. Their findings are

based on research investigating the effects of model cnaracteristics on

parameter estimates In confirmatory factor analysis. However, it makes

intuitive sense that parameter estimates should likewise be affected in

structural equation models.

Gerbing & Anderson also noted that sample size and the number of

indicators per latent variable had large effects on the structural

parameter which relates two factors. This study found a somewhat

similar effect on the variance terms of the matrix 4 and on the

disturbance terms of the matrix,. By misspecifying the model and by
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limiting the number of indicators to two, estimation is hindered. The

incidence of bias for the parameters in these two matrices was much

higher, even in cases in which the bias of other parameters was limited,

and the model otherwise performed optimally. This was particularly true

for sample sizes of 100. The bias of these parameters indicates that

the misspecification introduces a degree of uncertainty into the

estimation procedure. Much of the variance which is otherwise accounted

for In the population model cannot be explained in the misspecified

model. Thus these terms are apt to oe affected.

Implications for Educational Research

The development of LISREL-type structural equation models has

decidedly influenced the direction of educational research in the pa t

few years. Causal modeling techniques allow researchers to hypothesize

about uhe complex relationships among theoretical variables in a manner

that is not possible with path analysis or multiple regression.

The popular usage of any statistical technique leads many

researchers to speculate on tne utility of that technique. While the

robustness of more traditional methodologies against violations of

assumptions has been tested, the effects of such violations are not

clear when using LISREL-type models. These procedures have only

recently been under study.

Thls study adds to the literature by having examined the effects of

model misspecification and sample size. Although the generalizations

of the study are restricted due to the particular class of models anc

the particular types of misspecification examined, such generalizations

may lead us to a more "informed guessing" of how such model

misspecifications may affect results when working in an applications

2 A
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context. Although linear structural equation modeling is never

recmmended to he used in the total absence of substantive theory, the

prestnce of equally plausible yet conflicting theories may result in

various different model specifications for the same theoretical research

question. Xnowledge of how modes oehave under alternate

misspecificatlons is a valuable asset in such situations.

In general, the results of this study strongly confirm the idea that

LISREL-type modeling most be undertaken only when there is guiding

substantive theory. In many cases, misspecified models were

inaccurately described as having acceptable goodness-of-fit.

Alternative models may have equally good fits. The ultimate decision to

accept a model most lay with the researcher. The numbers themselves

cannot be used as the sole criteria for Judging the quality of a model.
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PARAMEM

kylI 1.011

ky2 .9

6y32 1 0
ay42 .7

ky53 1.0

6),(0 .8

63(11 1.0

6)(21 .9

013 .3

031 .7

032 .5

VII .6

V2I .8

11 .9

wil .5

w22 .2

w33 .1

0(11 .1

1422 .2

0c33 .1

9c44 .4

9c55 .1

0c66 .3

'au .1

0442 .2

e factor loadings of 1.0 are fixed for manifest variables

TADLE I. VALUES OF POPULATION PARAMETERS

2t)



Model IA Model lB Model IC

11: ZOO 100 200 100 200 100

Part 1.a

31a1 a factor
loadings

Bias of structural

?ammeters

rib o. pal

:r psi matrices

dias or seas.
2rror terms

31as of standard
errors

?art 11.1)

Goodress-of-f lt

Fiodification index
for error

T-value for err

Honconvergence

Improper solutions

II

RA HA HA HA

I.

apart i indicates the degree of bias from strongest ( ) to no
bias (-). The degree of bias was based on the number 1;)
parameters affected and the severity of the bias.

bPart 11 indicates degree of departure from optimal performance;
it ranges from strongest departure (..) to no departure (-1.

TABLE 2. SLWAILRT OF RESULTS FOR MODEL



Model 2A Model 2E Aodel 2C

MS 200 100 200 100 200 100

?art l.a

B ias of factor
loadings

B ias of structural
parameters

B ias of phi
or psi matrices

Bias of meas.
error terms

Bias of standard
errors

IS I II

?art 11.1)

Goodness-of-fit OS OS NO SO

Modiftcati .n Index NA NA HA HA HA HA
for error

T-value for error

lionconvergence OS ON

Improper solutions

apart I indicates degree of bias from strongest () to no bias
The degree of bias was based on the number of parameters

affected and the severity of the bias.

bPart II Indicates degree of departure from optimal performance;
it ranges from strongest departure Ot to no departure

TABLE 3. SUMMARY OF RESULTS FOR MODEL 2



Model 36 Model 38

N. 200 100 200 100

fArl1,1

Bias of factor
loadings

Blzs cf structural

oar Meters

has ox pal
or osi matrices

31as of uea
error terms

1N UN

3Ias of st?ndard .0 o. 411 ..
errors

'art 0.4

Goodnesc-of-fit

Model 3C

200 100

Moditication index 11 MO
for error

T-value for error NI

Nonconvergence

Improper solutions

apart I indicates the degree of bias from strongest (e.) to no
bias (-). The degree of bias was based on the number of
parameters affected and the severity of the bias.

bPart II indicates degree of departure from optimal performance;
It ranges from strongest departure (01 to no departure 1-).

TABLE . SUMMARY OF RESULTS FOR MODEL 3

28



Model IA

Total

Solutions Honconvergence
Improper

Solutions

N:200 327 22(7/ 1 28(9/)
N:100 350 44(134) 2419/)

Model IB
N:200 597 _9)(49/) 7(3/1
N:100 600 -91(494) 9(3')

Model IC
N:200 350 0(04) 17(5')
N:100 350 0(04) 21(64)

Model 2A
N:200 339 27(07) 1O(34)
11:100 350 26(7z) 17 (54)

Model 2B
N:200 343 14(47) 8(2/)
N:100 350 a4(I34) 5(27)

Model 2C
N:200 480 I76(37/) 0(0')
N:100 407 107(374) 0(04)

Model 3A
N:200 636 324(514) 2(14)
N:100 642 322(50/) 1(04)

Model 38
N:200 351 13(44) 6(24)
N:100 372 50(134) 25(8/)

Model 3C
8:200 322 0(0/) 110')
N:100 351 0(04) 16(5')

TABLE 5. IMPROPER SOLUTIONS Alm NOPMWERGEICE

2()


